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Abstract (stored data item) is often not known in advance. In addi-
tion, because multiple users could update the same piece
Plutus is a cryptographic storage system that enablessieeata, a third user may from time-to-time update “the
cure file sharing without placing much trust on the filmessage” before it reaches its eventual recipient. Stored
servers. In particular, it makes novel use of cryptograptdata must be protected over longer periods of time than
primitives to protect and share files. Plutus features lyighi/pical message round-trip times.
scalable key management while allowing individual usersMost existing secure storage solutions (either encrypt-
to retain direct control over who gets access to their filegn-wire or encrypt-on-disk [40]) require the creators of
We explain the mechanisms in Plutus to reduce the nugiata to trust the storage server to control all users’ access
ber of cryptographic keys exchanged between users tBythis data as well as return the data intact. Most of these
using filegroups, distinguish file read and write accesgorage systems cater to single users, and very few allow
handle user revocation efficiently, and allow an untrustedcure sharing of data any better than by sharing a pass-
server to authorize file writes. We have built a prototypgord.
of Plutus on OpenAFS. Measurements _of th_is prototypeThis paper introduces a new secure file systehatus
show that Plutus achieves strong security with overhegfich strives to provide strong security even with an un-
comparable to systems that encrypt all network traffic. trysted server. The main feature of Plutus is that all data
is stored encrypted and all key distribution is handled in
) a decentralized manner. All cryptographic and key man-
1 Introduction agement operations are performed by the clients, and the
server incurs very little cryptographic overhead. In this
As storage systems and individual storage devices thgsaper we concentrate on the mechanisms that Plutus uses
selves become networked, they must defend both agatasrovide basic filesystem security features — (1) to de-
the usual attacks on messages traversing an untrusted@&-and prevent unauthorized data modifications, (2) to
tentially public, network as well as attacks on the storefifferentiate between read and write access to files, and
data itself. This is a challenge because the primary pg®) to change users’ access privileges.
pose of networked storage is to enable easy sharing opytys is an encrypt-on-disk system where all the key
data, which is often at odds with data security. management and distribution is handled by the client. The
To protect stored data, it is not sufficient to use tradigvantage of doing this over existing encrypt-on-wire sys-
tional network security techniques that are used for seCims is that we can (1) protect against data leakage attacks
ing messages between pairs of users or between cligfiighe physical device, such as by an untrusted adminis-
a.nd servers. Th|nk|ng Of a StOI‘ed data |tem as Simpl){'@tor’ a Stolen |apt0p, or a Compromised server; (2) al_
message with a very long network latency is a misleadipgy users to set arbitrary policies for key distribution gan
analogy. Since the same piece of data could be readiR¥refore file sharing); and (3) enable better server scala-
multiple users, when one user places data into a shaggfly because most of the computationally intensive cryp-
storage system, the eventual recipient of this “messagggraphic operations are performed at end systems, rather
~{maheshk, swarak@hpl.hp.com. thanin c_entra!lzed servers. o
tWork done while at HP Labs. Current address: Seagate Tengyol ~ BY UsINg client-based key distribution, Plutus can al-
Pittsburgh, PA 15222; erik.riedel@seagate.com. low user-customizable security policies and authentica-
fwork done while at HP Labs. Current address: Mechanical £ngjon mechanisms. Relative to encrypt-on-wire systems,

neering Department, Pennsylvania State University, UsitiePark, PA . PRTI . . -
16802: qUWE@psu.edu. clients individually incur a higher overhead by taking on
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legroups [40], which aggregates keys for multiple file$p securing data on a single untrusted file server, the ideas
shows that the number of keys that any individual needsuld be generalized for a set of replicated file servers.
can be kept manageable.
Instead of encrypting and decrypting files each timg 2>  Trysted client machine
they are exchanged over the network, Plutus pre-computes
the encryption only when data is updated; this is a mdgsers must trust their local machine. This is, however,
scalable solution as the encryption and decryption cosgifficult to guarantee: providing for a secure program ex-
distributed among separate users and never involves gegtion environment in an untrusted computing platform
server. is an open problem. Some previous work aims to securely
We have built a prototype of Plutus in OpenAFS [37nonitor loaded applications [48] or provide partitioned
This enhancement to OpenAFS retains its original accé$gual machines to isolate vulnerabilities [10, 48, 50].
semantics, while eliminating the need for clients to trust
servers. Measurements on this prototype show that strgn@  |_azy revocation
security is achievable with clients paying cryptographic
cost comparable to that of encrypt-on-wire systems, aR#tus allows owners of files to revoke other people’s
servers not paying any noticeable cryptographic overheH@hts to access those files. Following a revocation, we
Since the cryptographic overhead is shifted completely@§sume that it is acceptable for the revoked reader to read
the clients, the server throughput is close to that of natiy@modified or cached files. A revoked reader, however,
OpenAFS. Note that these modifications have no imp&gtst not be able to read updated files, nor may a revoked
on the way end applications access files; they change offfjter be able to modify the files. Settling for lazy revoca-
the way users set sharing permissions on files. tion trades re-encryption cost for a degree of security. We
The rest of the paper is organized as follows. Sectiorffaborate on lazy revocation in Section 3.4.
describes our threat model and assumptions. Section 3
presents the mechanisms and design of Plutus. Sectidd.4 Key distribution

describes a number of subtle attacks that remain possible ) )
and outlines potential solutions, and Section 5 describ¥e assume that users authenticate each other to obtain rel-

protocols for creating, reading and writing files, and ré&vant keys to read and write data on the disk via a secure
voking users. Section 6 describes the implementation ditgNn€l — we do not introduce new authentication mech-
usage of Plutus, and Section 7 evaluates the prototype. $SmS in this paper. Furthermore, all these exchanges

discuss related work in Section 8 and conclude in S carried out on-demand; if users want to read/write a
tion 9. file, they contact the file owner (or possibly other read-

ers/writers) to obtain the relevant key. Keys are never
broadcast to all users.

2 Threat model
2.5 Traffic analysis and rollback
This section discusses the assumptions and threat model i i L
of Plutus. This paper will use the terminology introduce e do not address the issue of traffic analysis in this pa-

previously [40] withowners(create data)eaders(read per; that |s: we do not make any explicit attempt to obfus-
data),writers (write and possibly read data), asdrvers cate users’ access patterns. However, Plutus does support
(store data) options to encrypt filenames, and encrypts all I/O requests

to the server. Recently SUNDR [32] introduced the notion
of a rollback attack, wherein an untrusted server tricks a
2.1 Untrusted servers and availability user into accepting version-wise inconsistent or stala dat
relative to other users. We defer the discussion of rollback

In Plutus, we trust servers to store data properly, but tection to a future work [15].

to keep data confidential. While a server in Plutus may
attempt to change, misrepresent, or destroy data, clients
will detect the malicious behavior. 3 Design

Cryptography alone, however, cannot prevent destruc-
tion of data by a malicious server. Replication on multiple an encrypted file system, we need techniques to (1)
servers can ensure preservation of data even when mdifferentiate between readers and writers; (2) prevent de-
of the servers are malicious. Systems such as BFS [tfuction of data by malicious writers; (3) prevent known
Farsite [1], OceanStore [25], PASIS [17], PAST [12], anplaintext attacks with different keys for different fileg;)(
S4 [47] address techniques for secure availability througgvoke readers and writers; and (5) minimize the num-
replication=—TFhoughsin-this-paper; we restrict our focuser of keys exchanged between users. The following core
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mechanisms together achieve these functions: filegroup<ilegroups uniquely identify all keys that a user needs
lockboxes, keys, read-write differentiation, lazy revocao perform an operation on a file. This filegroup informa-
tion, key rotation, and server-verified writes. tion can be located together with the rest of the meta-data
about the file, for instance, in the UNIX FFS inode (re-
placing the group and mode bits), or by adding an entry in
the disk vnode in AFS [43].

Plutus groups files (not users) irfitegroupsso that keys  On the downside, using the same key to encrypt mul-
can be shared among files in a filegroup without cortiple files has the disadvantage that the same key en-
promising security. Filegroups serve as a file aggregationypts more data, potentially increasing the vulnerapilit
mechanism to prevent the number of cryptographic keyssaknown plaintext and known ciphertext attacks. How-
user manages from growing proportional to the numbever, this is not an issue if these keys are actuallyfitee

of filest. Aggregating keys into filegroups has the odeckboxkeys, and the real file encryption keys are differ-
vious advantage that it reduces the number of keys tleat for different files. The lockbox can then securely hold
users need to manage, distribute, and receive. This is time different keys; Section 3.3 explains further.

portant if users have to perform all key management andrilegroups also complicate the process of revoking
distribution themselves. Key aggregation is also necesers’ access to files because now there are multiple files
sary to support semi-online users: as in today’s systertist the revoked user could have access to. It is tempting
Plutus assumes that users are frequently online, but notialsimplify revocation of users by having one key per file.
ways. This means that we need an easy mechanism tariedugh this scheme is seemingly more secure (losing a
an owner share a group of related files, so that the otlkely compromises one file only), managing these keys is a
user may be able to access the related files even whendhallenge. At best they can be organized into some sort
owner is not online. Additionally, as described in Se®f hierarchy such that the users have to keep fewer keys
tion 3.2, we associate a RSA key pair with each filegrougecurely, but this clearly resembles filegroups. Plutus’ so
If files were not aggregated and each file had its own kiytion for this problem is discussed in more detail in Sec-
pair, from the measurements in Section 7, each create tipn 3.4.

eration would incur a 2.5 seconds latency to generate the

RSA key pair — in comparison, it takes 2.9 seconds to e§|-

crypt/decrypt a 20M file with 3DES. 2 Keys

_With filegroups, all files with identical sharing atrjgyre 1 illustrates the different objects in Plutus, anetho
tributes are grouped in the same filegroup and are Pifierent keys operate on them. Here we describe the
tected with the same key. This exploits the fact that evepy,ctyres: later sections discuss these design decisions
though a user typically owns and accesses many files, f§re detail. Every file in Plutus is divided into several
number of equivalence classes of files with d|ﬁerentshq{rocks’ and each block is encrypted with a unique sym-
ing attributes is small; this enables multiple files to shaggetric key (such as a DES key), calledile-block key
the same set of keys. . The lockbox, based on ideas in Cepheus [13], holds the

Using filegroups dramatically reduces the number gfg_piock keys for all the blocks of the file and is read and
keys that a user needs to keep track of and the numbe{,gkien py file-lockboxkeys. File-lockbox keys are sym-
keys users must obtain from other users. In the contextRiric keys and are given to readers and writers alike. Al-
the sharing semantics of current UNIX file systems, if WRrnatively, Plutus could use a single file-block key for all
files are owned by the same owner, the same group, @jdks of a file and include an initialization vector. File-
have the same permission bits, then they are authoriggtdhox keys are the same for all the files in a filegroup.
for access by the same set of users. All such files coylflyrger to ensure the integrity of the contents of the files,
logically be placed in the same filegroup, and encryptgdtyyptographic hash of the file contents is signed and ver-
with the same key. _ _ ified by a public-private key pair, which we cdille-verify

In general there is no relation between the directory ieysandfile-sign keysThe file-sign keys are the same for
erarchy and the files in a filegroup, though it may be somgy the files in a filegroup. As an optimization, a Merkle
times convenient to define filegroups based on the sef@fp, tree [34] is used to consolidate all the hashes, with
files in one directory (which is, for instance, how AF%my the root being signed.
defines access rights). Specifically, two encrypted files|j,ike files, which are encrypted at the block level, en-

from two different directories may belong to the same fjos of girectories are encrypted individually. This atio
legroup. Thus, filegroups can be viewed as an invisifigs server to perform space management without involv-
overlay on the directory structure. ing the clients, such as allocating inodes and performing
LA previous study [40] mistakenly attributes the filegroumcept to & fSCk_ after a crash. Also, this allows users .tO browse di-
Cepheus [13] instead of itself. rectories and then request the corresponding keys from
q p g Key

3.1 Filegroups and lockboxes
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Inode 1 header

file-name key for "foo" L 1 [ .
: filegroup A [€ | 20
I ‘J blockihash | pode 1
foo inodeptr1 [-------- : inode 1 hash tree X4 file block key 1 =
/ L .
bar inode ptr2 |- > S
—| filegroup B Root hash+ 4 _ . : Inode 1
tmp inode ptr3 |----: group signature N . block 2 hash . block 2
: '\ . L[ _fileblockkey2 =
. : inode 2 T\ '
directory "slash” o > \
Inode 1
- : lock 3 hash '
filegroup A = = : block 3 has . block 3
file-sign key & .| fileblock key 3 =
file-verify key : '
inode 3 for filegroup A
file "foo" data
filegroup-name key for filegroup-name key for ) e
filegroup B filegroup A file-lockbox key for "foo

Figure 1: Keys in Plutus. The keys are all highlighted in betdl are linked to the objects that they operate on using
bold lines. Dashed lines indicate object pointé&iige-name keysan encrypt the names of files in directories. An inode
contains the names of the filegroup that the file belongs t tlaefilegroup-name kegan encrypt filegroup names.
The header contains the Merkle hash tree. The leaves of #tethee are lockboxes containing tfile-block keys
which are encrypted with thiéle-lockbox key The signature of the root is computed and verified usinditaesign
keyandfile-verify keyrespectively.

the file’s owner. The filegroup and owner informatiokeys for differentiated read/write access was mentioned
is located in the inode, as in the case of UNIX. Thia the work on securing replicated data [49], the design
names of files and filegroups can be encrypted with te®pped short of finding a cryptosystem to implement it.
file-name keyand filegroup-name keyrespectively. En-  Note that though the file-verify key is same as the pub-
crypting the names of files and filegroups protects agaitistkey in a standard public-key system, it is not publicly
attacks where the malicious user can glean informatidisseminated. Owners of files issue the file-verify key
about the nature of the file. only to those they consider as authorized readers; simi-
All the above described keys are generated and d&r is the case with the file-sign key.
tributed by the owners of the files and filegroups. In In our implementation, we use RSA for the sign/verify
addition, currently in Plutus, readers and writers caperations. Then only the readers and writers kngw
(re)distribute the keys they have to other users. Plutus (the RSA modulus). The file-verify ke, is not a
tentionally avoids specifying the protocols needed to alew-exponent prime number (it has to be greater than
thenticate users or distribute keys: these are independ®nht* [6]). Writers get(d, V), while readers gete, V).
of the mechanisms used to secure the stored data and can

be chosen by individual users to match their needs. 3.4 Lazy revocation

In a large distributed system, we expect revocation of
users to happen on a regular basis. For instance, accord-
One of the basic security functions that file systems supg to seven months of AFS protection server logs we
port is the ability to have separate readers and writersabtained from MIT, there were 29,203 individual revo-
the same file. In Plutus, this cannot be enforced by thations of users from 2,916 different access control lists
server as it itself is untrusted; instead we do this by tlfeounting the number of times a single user was deleted
choice of keys distributed to readers and writers. Filcom an ACL). In general, common revocation schemes,
lockbox keys themselves cannot differentiate readers awth as in UNIX and Windows NT, rely on the server
writers, but can do so together with the file-sign and filehecking for users’ group membership before granting ac-
verify key pairs. The file-sign keys are handed to writeress. This requires all the servers to store or cache infor-
only, while readers get the file-verify keys. When updatnation regarding users, which places a high trust require-
ing a data block, a writer recomputes the Merkle hash traeent on the servers and requires all the servers to maintain
over the (current) individual block hashes, signs the raibiis authentication information in a secure and consistent
hash, and places the signed hash in the header of the filanner.

Readers verify the signature to check the integrity of theRevocation is a seemingly expensive operation for
blocks.read-from.the.server-Theugh using public/privagncrypt-on-disk systems as it requires re-encryption (in

3.3 Read-write differentiation
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Plutus, re-computing block hashes and re-signing ramtre, the sequence of keys must have the following prop-
hashes as well) of the affected files. Revocation also &rties:

troduces an additional overhead as owners now need t(% Only the owner should be able to generate the next

g(':sstr:ﬂurteevgi\;\{[iléiyﬁetgéjfgrl; TTJ(;l:gr:ltg:j Ster::eu”z/hzirlgagé version of the key from the current version. This is
9  (Ney to prevent anyone from undoing the revocation.

implemented with minimal overhead to the regular user%) An authorized reader should be able to generate all

sharing those files. : :
. : previous versions of the key from the current ver-
To make revocation less expensive, one can delay re- ", L ,
sion. Then readers maintain access to the files not

encryption until a file is updated. This notion of lazy re- ot re-encrvoted. and readers mav discard previous
vocation was first proposed in Cepheus [13]. The idea is yetr ypted, y P
versions of the key.

that there is no significant loss in security if revoked read-

ers can still read unchanged files. This is equivalent to then Plutus, each reader has only the latest set of keys.

access the user had during the time that they were autWériters are directly given the newest version of the keys,

rized (when they could have copied the data onto floppince all file encryptions always occur with the newest set

disks, for example). Expensive re-encryption occurs ondy keys. The owners could also do the new-key distribu-

when new data is created. The meta-data still needs tdiba non-interactively [14], without making point-to-pi

immediately changed to prevent further writes by revokednnections to users.

writers. We discuss subtle attacks that are still possible i To assist users in deciding which keys to use, each key

Section 4. has a version number and an owner associated with it.
A revoked reader who has access to the server will sfilach file has the owner information, and the version num-

have read access to the files not changed since the udggisof the encryption key embedded in the inode. Note

revocation, but will never be able to read data updatttiat this serves only as a hint to readers and is not required

since their revocation. for correctness. Readers can still detect stale keys when
Lazy revocation, however, is complicated when multihe block fails to pass the integrity test.

ple files are encrypted with the same key, as is the casélext we will describe how we achieve key rotation for

when using filegroups. In this case, whenever a file géie-lockbox keys and file-sign/file-verify keys.

updated, it gets encrypted with a new key. This causes

filegroups to get fragmented (meaning a filegroup coudd5.1 Rotating file-lockbox keys

have more than one key), which is undesirable. The next

section describes how we mitigate this problem: briefly/1€Never a user's access is revoked, the file owner gener-
we show how readers and writers can generate all the p? >s a new version of the file-lockbox key. For this discus-

vious keys of a fragmented filegroup from the current keg'/?/gélre;zgg?z;;est?ﬁevﬁg?cg;gﬁ ]:‘Iillz-llcc))((::itt))%i kkee); Irg(ren

the current key by exponentiating the current key with the
3.5 Key rotation owner's private key(d, N): K,;; = K? modN. This
. L way only the owner can generate valid new file-lockbox
The natural way of doing lazy revocation is to generat
new fiIegr_oup for all the files that are rr_wodified_following Au'thorized readers get the appropriate version of the
a revocation and then move files to this new filegroup flfg-lockbox key as follows. (Figure 2 illustrates the rela-

file_s get re-e_ncrypted. This raiseS_ two issues: a) therﬁi@n between the different file-lockbox key versions.) Let
an increase in the number of keys in the system followin

. . Bbe the current version of the file-lockbox key that a user

each revocation; and b) because the sets of files that
re-encrypted following successive revocations are not re-
ally contained within each other, it becomes increasingly® If w = v then the reader has the right file-lockbox
hard to determine which filegroup a file should be moved key to access the file.
to when it is re-encrypted. We address the first issue bye If w < v then the reader has an older version of the
relating the keys of the involved filegroups. To address key and needs to request the latest file-lockbox key
the second issue, we set up the keys so that files are al- from the owner.
ways (re)encrypted with the keys of the latest filegroup; e If w > v then the reader needs to generate the older
then since keys are related users need to just remember version of the file-lockbox key using the following
the latest keys and derive previous ones when necessary. recursion. IfK, is the file-lockbox key associated
We call the latter procedsey rotation with versionw, thenk,,_; = K¢ mod N, where

There are two aspects of rotating the keys of a filegroup (e, V) is the owner’s public key. Readers can recur-
a) rotating file-lockbox keys, and b) rotating file-sign and  sively generate all previous file-lockbox key from the
file-verify-keysln-either.case to.make the revocation se- current key.
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initial key 1st revocation 2nd revocation 3rd revocation
f } } i
K§ (mod N ) K¢ (mod N ) K¢ (mod N )
owner /\A /\A
Ko K1 K, Kj
reader '\_/ ‘\_/ '\/
K$ (mod N ) K5 (mod N ) K$ (mod N )

Figure 2: Key rotation for file-lockbox keys. Using RSA, anrev can rotate a kel(; forward. Users can only rotate
keys backwards in timge, V) is the owner’s public key angi, N) is the owner’s private key

In the above protocol, we use RSA encryption asfide-sign key.
pseudorandom number generator; repeated encryption i§iven the current version seéd,, readers can generate
not likely to resultin cycling, for otherwise, it can be usegrevious version file-verify keyéd,,, N, ), foru < v as
to factor the RSA modulud’ [33]. Though we use RSA follows. They first rotate the sedd, backwards to get the
for our key rotation, the property we need is that there Beedk,,, as described in the previous section. They read
separate encryption and decryption keys, and that the @d verify) the modulusV, from the file header. They
quence of encryptions is a pseudorandom sequence Wiign use the procedure described above to determine
a large cycle; most asymmetric cryptosystems have thism N, andK,,.
property. The reason for changing the modulus after every revo-
Though this scheme resembles Lamport's passw@gkion is to thwart a subtle collusion attack involving a
scheme [27], our scheme is more general. Our schepa@der and revoked writer — if the modulus is fixed to, say
provides for specific users (owners) to rotate the key oK', a revoked writer can collude with a reader to become
ward, while allowing some other users (readers) to rotadevalid writer (knowinge,, d,, and N’ allows them to
keys backwards. factor N', and hence compute the new file-sign key).

3.5.2 Rotating file-si d file-verify k e .
otating file-sign and file-verify keys 3.6 Server-verified writes

By using the file-lock box key generated above as a seed,

we can bootstrap the seed into file-sign and ﬁle-veriw1e final question we address is how to prevent unautho-
keys as follows. Let the versiarfile-sign key be(e,, N, ) rized writers from making authentic changes to the persis-

and the corresponding file-verify key é,, N,). In Plu- tent store. Because the only parties invqlved in the. actual
tus N, is stored in file’s header in the clear, signed by th¥'ite are the server and the user who wishes to write, we
owner to protect its integrity. Note that all files in the fileD®€d & mechanism for the server to validate writes.
group with the same version have the same Va'uéWpr In traditional Storage SyStemS, this has been accom-
When a user is revoked, the owner picks a new RYAished using some form of an access control list (ACL);
modulusN,, and rotates the file-lockbox key forward tghe server permits writes only by those on the ACL. This
K,. Using the latest seelf,, owners and readers genercequires that the ACL be stored securely, and the server
ate the file-verify key as follows. Given the se&d, e, authenticates writers using the ACL.
is calculated by usind(, as a seed in a pseudo-random In Plutus, a file owner stores a hash of a write token
number generator. The numbers output are addedXp Stored on the server to validate a writer. This is semanti-
and tested for primality. The first such number is chosé€ally the same as a shared password.
ase,. The conditions that, > /N, ande, is a prime  Suppose a filenamg is not encrypted. The owner of
guarantee thajcd(e,, ¢(N,)) = 1[28], makingitavalid the file creates a write-verification key,, as the write
RSA public key. (Notice that the latter test cannot be pdgpken. ThenF and the hash of the write tokef, [ K],
formed by readers because they do not kagw,,)). The are stored on the server in the file’s inode.
pair (e,, N,) is the file-verify key. Upon authentication, writers get the write tokén,
Owners generate the corresponding RSA privatekeyfrom the owner. When writers issue a write, they pass
and use it as the file-sign key. Since writers never haveth® token to the server. To validate the write, the server
sign any data with old file-sign keys, they directly get thean now computéf [K,,] and compare it with the stored
latest file-sign key(d,, N,,) from the owner. If the writers value. Readers cannot generate the appropriate token be-
have no read access, then they never get the seed, andsause they do not knov,,. The token is secure since
is-hard-for-them-to.determine.thefile-verify key from théhe hash value is stored only on the server. Optionally the
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server can cache the hashed write tokens to speed up writ€hese attacks can be prevented by some combination of
verification. the following mechanisms: change the read/write verifica-

One problem with the above scheme is that frotion token (T), re-encrypt the lockbox with a new key (L),
H|K,], anyone can learn useful structural informatioand re-encrypt the file itself with a new key (D). Table 1
such as which files belong to which filegroup even whemesents the possible attacks classified into those that are
the filegroup name is encrypted. This is undesirable giveoked reader could mount, or those that a revoked writer
that storage system itself can be stolen and it does motild mount. In each case, the attacker may act alone or
do any authentication of the readers. Such attacks carirbeollusion with the server. The attacks that writers can
thwarted by replacind? [K,,| with H[K,,, F] and the fi- mount depend upon whether an unsuspecting reader has
legroup name withtH [K,, F|, whereK, is the filegroup- the updated keys or not.
name key. If a system uses lazy revocation, we can prevent re-

The write token used above is similar to the capabiliti@®ked readers from accessing data that has been updated.
used in NASD [19] and many systems before [29]. HoviHowever to prevent them from accessing data that has not
ever capabilities in general are given out by a centralizeden updated, we would need some form of “read veri-
server whereas write tokens are generated by individdightion” — verification of read privileges on each read
file owners and are given to writers in a distributed maaccess, analogous to write-verification. If this verifica-
ner. tion were done by the storage server then the reader could

The benefit of this approach is that it allows an umot get to the data alone, but could do so in collusion
trusted server to verify that a user has the required awmith the server. To prevent this attack, the file must be
thorization, without revealing the identity of the writer t re-encrypted, re-encrypting just the lockbox would be in-
the server. The scheme also makes it easy for the servesu#icient.
manage the storage space by decoupling the informatiomhe problem with revoked writers is more severe.
required to determine allocated space from the data itsélfjain, we can prevent revoked writers from updating data
Though the actual data and (possibly) filenames and filgr verifying each write. But if this verification is done by
group names are encrypted and hidden, the list of physitteg server — as in server-verified writes — the system is
blocks allocated is visible to the server for allocation deubject to an attack by a revoked writer colluding with the
cisions. server to make valid modifications to data. The only way

There are several file systems such as Cedar [18], Bieprevent this would be to broadcast the changed key to
phant [41], Farsite [1], Venti [38], and Ivy [36], whichall users aggressively . Otherwise, a revoked writer will
treat file data as immutable objects. In a cryptograptatways be able to create data that looks valid and cheat
storage file system with versioning, server-verified writéansuspecting) readers who have not updated their key.
are less important for security. Readers can simply choosérom the above discussion, it should be clear that lazy
to ignore unauthorized writes, and servers need wotwvocation is always susceptible to attacks mounted by re-
only about malicious users consuming disk space. In naoked users in collusion with the server, unless a third
versioning systems, a malicious user could corrupt a go@rlisted) party is involved in each read and write access.
file, effectively deleting it. Finally, the server could mount the following attack,

which we consider very difficult for the system to handle.
: ) In aforking attack[31], a server forks the state of a file
4 Security analysis between users. That is, the server separately maintains
file updates for the users. The forked users never see each

This section explores the set of attacks that remain p@gher’s changes, and each user believes its state reflects re
sible and explains how to adapt Plutus to thwart these ality. A higher level Byzantine agreement protocol, which
tacks. We also argue that some of the remaining attagk$yotentially expensive, might be necessary to address
can never be handled within the context of our systemgis issue [11]. Recently Maziéres and Shasha [32] in-
any reasonable additional cost. troduced the notion dfork consistencynd a protocol to

In decreasing order of severity, an attacker may:  achieve it. Though their scheme does not prevent a fork-

) ) ing attack, it makes it easier to detect.
(a) write new data with a new key

(b) write new data with an old key
(c) write old data with an old key; thatis, reverttoanoléy  Protocols

version
(d) destroy data We now summarize the steps involved in protocols for
(e) read updated data creating, reading and writing as well as revoking users.
(D-read-datathat-hasnet.yet-been updated. We would like to remark again that all the keys and to-
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| Users | Key freshness| Collusion [None| D | L | LD | T | TD | TL | TLD |

alone f f f - - - _ _

revoked reader old keys w/server | ¢, df | cdf| cdf| cdf]| cdf| cd | cdf]| cdf
old keys alone | c¢bd|cbd|chbd[cbd] - | - | - | -

. Yy w/ server | ¢,b,d | ¢,b,d| c,b,d| ¢c,b,d| ¢c,b,d| ¢,b,d]| ¢c,b,d| ¢cb,d

revoked writer

updated keys | 201 nfa | nfa | d d na | nla | - -
p YS| wiserver | n/a n/a d d n/a | n/a d d

Table 1: Attacks tabulated against what is changed follgwinevocation. The heading row presents different choices
in the component that is changed following a revocation: rdaal/write verification token is changed (T), the file’s
lockbox is changed (L), or the file itself is re-encryptedtwé new key (D). The entries in the table correspond
to the most serious attack that can be mounted, the lettex codesponding to those described in the main text.
“n/a” indicates an impossible combination — such as readaving updated keys but files not being re-encrypted or
lockboxes not changed. A “—" is used to denote that no atmplossible.

kens in these protocols are exchanged between owne#ds Write file: The writer obtains the latest version file-
and readers/writers via a secure channel with a session
key — for instance, mutual authentication based on pass-
words. However, file data is not encrypted over the wire,
but only integrity-protected with the session key.

1.

Initialize filegroup: To initialize a filegroup, a user
generates a pair of dual keys (file-sign and file-verify
keys) for signing and verifying the contents of files in
the filegroup. The user also generates the symmetric
file-lockbox key.

. Create file: First, the owner selects a filegroup for 5,

the new file. If there is no appropriate filegroup
the owner initializes one and uses the corresponding
keys (file-sign, file-verify, and file-lockbox keys) for
this file. The owner also generates a write token and
sends it to the server so that the server can verify all
writes to this file.

. Read file: A reader first obtains the name of the

owner and the filegroup of the file he wishes to a
cess, possibly after browsing the file system. T
reader then checks if the version of the keys she
cached is greater then the version of the keys u

to encrypt the file (which is stored in the headef}ga
in which case she does a key rotation to get t

right version key. Otherwise, the reader gets the Ia{
est version key from the owner after appropriate au-

lockbox key and file-sign key, possibly from the
owner if it is not cached. The writer then gener-
ates the file-block keys, encrypts individual blocks
of the file using the corresponding file-block keys,
and stores the encrypted blocks with the lockbox in
the server. The server uses the write-token, provided
by the writer at this time, to authorize the write. The
writer then sends the entire Merkle hash tree in the
clear to the server; the hash tree includes the root
hash, signed with the file-sign key.

Revoke user: To revoke a user from accessing files
in a filegroup, the owner generates the next version of
the file-sign, file-verify, and file-lockbox keys. The
owner then labels all files in the filegroup as need-
ing re-encryption. If the revoked user is a writer, the
owner changes the write-tokens in all the files of the
filegroup as well.

Implementation

r@ging the protocols and ideas discussed in Section 3, we
ve designed Plutus and developed a prototype using
e
pre and the prototype of Plutus in detail.

nAFS [37]. In this section, we describe the architec-

thentication (via a secure channel). The reader thgml. ~ Architecture of Plutus

fetches the encrypted blocks of the desired file from

the server, opens the lockboxes with the file-lockbdxgure 3 summarizes the different components of Plu-

key, retrieves file-block keys from the lockbox, anéHS.

and where (server side or client side) they are im-

decrypts the individual blocks. The integrity of thelemented. Both the server and the clients have a network
root hash (of the Merkle tree) provided by the servéPmponent, which is used to protect the integrity of all
is first verified by using the file-verify key. To verifymMessages. In our implementation we protect the integrity
the integrity of the data, this root hash is comparédf Packets in the AFS RPC using HMAC [4]. Addition-
against the root hash obtained by recomputing tRY, Some messages such as those initiating read and write

Merkle hash tree using the file blocks retrieved frof¢quests are encrypted. A 3DES session key, exchanged
the server. as part of the RPC setup, is optionally used to encrypt
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client side (user level) client side (kernel) server side (user level)

Data cache
data encryption/ <:> .
h — .
decryption . !

' key exchange . ,

secure RPC

write verification

vfs interface

secure RPC

secure RPC

ioctl interface

key cache

extended inodes
shadow files

on-disk structures

to another client

Figure 3: Architecture of Plutus.

these packets. The identities of all entities are estaddisibox together with the length of the fragment. The hashes
using 1024 bit RSA public/private keys. of all the fragments are arranged in a Merkle hash tree,
The server has an additional component that valida@d the root signed (1024 bit RSA) with the file-sign-key.
writes. As described in Section 3.6, this component corfhe leaves of the tree contain the lockbox of the corre-
putes the SHA-1 hash of write tokens to authorize writesponding fragment. The tree is kept in a “shadow file,”
This hashed token is passed on to the server, when @nethe server, and is shipped to the client, when the corre-
file is created, and is stored in the file’s vnode (UNIX insponding file is opened. On the client side, when blocks
ode extension in AFS). Storing the token in the vnode iare updated, the respective new hashes are spliced into the
stead of the directory simplifies write verificattorOwn- tree. Then, the root hash is recomputed and signed when
ers change the stored token using a special ioctl call. the cache is to be flushed to the server. At this time, the
Most of the complexity of the implementation is at th@ew tree is also sent back to the server.
client-side. We extended the OpenAFS kernel module by
adding a key cache per user and a component to handle
file data encryption and decryption. The key cache holds2 Prototype
all keys used by the user, including file keys and iden-
tity keys (users’ and servers’ public keys). Currently all Puilding the Plutus prototype, we have made some
the encryptions and decryptions are done below the AR¥difications to the protocols to accommodate nuances
cache; that is, we cache clear-text data. By doing tEAFS. However, these modifications have little impact
we encrypt (decrypt) file contents only when it is being" the actual evaluation reported in the next section. _For
transmitted to (received from) the server. The alternatijéstance, currently AFS's RPC supports only authentica-
of caching encrypted data would mean that each par#iQn of the client by the server through a three step proce-
read/write would incur a block encryption/decryption, sdure. Recall that in Plutus design, the server never needs
would multiple reads/writes of the same block. We eX0 authenticate a client. We use only the last two steps of
pect this to incur a substantial cryptographic overhead. &S interface to achieve reverse authentication (i.eencl
course, caching unencrypted data opens up a security @ythenticating server) and session key exchange. To do
nerability on shared machines. this we need the server’s public key, which can be suc-
The other components of the client — revocation and kEJCtly implemented with self certifying pathnames [30],
exchange — are implemented in user space. These conips Securely binding directories to servers.
nents interact with the key cache through an extension tol he prototype uses a library that was built from the
AFS's ioctl interface. The same client-server RPC inteffyptographic routines in GnuPGP, with the following
face is used for all inter-client communication. choice of primitives: 1024-bit RSA PKCS#1(version
Files are fragmented, and each fragment (blocks of sik&)° for public/private key encryption, SHA-1 for hash-
4 KB) is encrypted independently with its own file-blockd and 3DES with CBC with Cipher Text Stealing [45]
(3DES) key. This 3DES key is kept in the fragment’s lockor file encryption.

2A similar problem was encountered in the context of storimaies 3For better security guarantees, RSA-OAEP is required; seeSs
and small files together [16]. proposal [46] for more details.

www.manaraa.com



Appears in the Proceedings of the 2nd Conference on File &ord@ Technologies (FAST'03). pp. 29-42 (31 Mar —
2 Apr 2003, San Francisco, CA). Published by USENIX, Beyk&A

7 Performance evaluation OVERHEAD OF REVOCATION

In the preceding sections, we analyzed protocols of Plutusrgpje 3 presents parameters of the traced system that af-
from a security perspective. We now evaluate Plutus fro@t the overhead of performing a revocation. In this con-
a performance perspective. In particular, we evaluate & we focus on the case where the owner of a filegroup
design and the prototype of Plutus using (&) a trace frgants to revoke another user’s permission to read/write
a running UNIX system, and (b) synthetic benchmarkes in the owner's filegroup. We use these parameters to
Using (a), the trace statistics, we argue the benefits ofd{ajyate the overhead of performing a revocation, both in
legroups and the impact of lazy revocation. By measurifgms of carrying out the operations immediately follow-
the overhead of Plutus using (b), synthetic benchmarks, 5 revocation, and re-distributing the updated keys to
we argue that though there is an overhead for the encryirer ysers. In the case of revoking a reader, the time spent
tion/decryption, Plutus is quite practical; in fact, it coMimmediately following a revocation is the time required to

pares favorably with SFS. mark all files in the filegroup as “to be re-encrypted.” In
the case of revoking a writer this is the time to change the
7.1 Trace evaluation write verification key of all the files in the filegroup. For

the system we traced, if a user revokes another user, this
The trace that we use for evaluation is a 10-day comyeuld involve marking 4,800 files to be re-encrypted, on
plete file system trace (97.4 million requests, 129 Gderage, and about 119,000 files, maximum. When a user
data moved and 24 file systems) of a medium-sized wo(keader or writer) is revoked, other users (readers/vs)ter
group using a 4-way HP-UX time-sharing server attacheéed to be given the updated key. Our evaluation shows
to several disk arrays and a total of 500 GB of storagieat this number is typically very small: 2 on average and
space. This represents access to both NFS filesystemsdlnatost 11 in the worst case.
the server exported, and accesses to local storage at the
server. The trace was collected by instrumenting the ker-
nelto log all file system calls at the syscall interface. 8inc .
this is above the file buffer cache, the numbers shown wfit2 ~ Cryptographic cost
be pessimistic to any system that attempts to optimize key

usage on repeated access. Table 4 presents the impact of encryption/decryption on
read and write latency. These are measurements of the
i System User cryptographic cost that includes write verification, data
Key sharing ———— [ max | mean| max encryption, and wire-transmission overheads. These were
key/file 1.700] 9.200] 900 | 41,100 done using com_je from_PIutus' cryptography Iibr_ary ona
keyffilegroup| 11 57 6 23 1.26 GHz Pentium 4 with 512 MB memory. In this evalu-

ation, we used 4 KB as the size of the file fragment (cor-
Table 2: Using filegroups to aggregate keys. ~ 'esponding to that of the prototype). As in the prototype,
for data encryption, we used 1,024-bit RSA with a 256-bit

file-verify key for reading and a 1,019-bit file-sign key for

KEYS AND FILEGROUPS writing and 3DES CBC/CTS file-block key for bulk data

Table 2 presents the number of keys distributed amo(ra_]rdcryptlon.

users. We classified all the user-ids in the system into@Wners incur a high one time cost to generate the
System (such as root, bin, etc.) and User (regular usef§pd/write key pair; this is another reason why aggre-
The first row represents the number of keys that need48ting keys for multiple files using filegroups is benefi-
be distributed if a different key is used for each file in th@al. Though the write verification latency is negligible
system; the second row represents the number of keys fpg writers and owners, if we choose to hide the identities
tributed if filegroups are used. In this evaluation, we us& filegroups, then we pay an additional cost of decrypt-
the (mode bits, owner, group) tuple to define ﬁ|egr0ud§_g it. The time spent in transmitting the Merkle hash tree
The table presents numbers for both the maximum nupgpends on the size of the file being transmitted. In Plu-
ber of keys distributed by any user, and the mean nufdS block hashes are computed over 4 KB blocks, which
ber of keys distributed (averaged across all users who di@ntribute to about 1% overhead in data transmission.
tributed at least one key). The table demonstrates the beri-or large files, the block encryption/decryption time
efit of using filegroups clearly: the maximum number afominates the cost of writing/reading the entire file.
keys distributed is reduced to 23, which is easy to mahhough Plutus currently uses 3DES as the block cipher,
age. Note that even this is a pessimistic evaluation agrdm Dai’'s comparison of AES and 3DES [9], we expect
assumed aold key cache a 3X speedup if AES were used.
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User System
Highest| Second| Mean | Highest | Second] Mean

number of files | 119,000| 101,200| 4,800 | 1,561,000| 94,000| 29,800

total bytes 17GB | 11GB | 06GB| 29GB 14GB | 1.3GB
number of readers 5 4 1.2 27 22 5.4
number of writers 6 5 0.7 15 14 1.7

Parameters

Table 3: Parameters of the system that affect revocatioasd lre statistics indicating the number of files in a single
filegroup owned by a user, the total size of all these filesntiraber of other users who have read permission to at least
one of these files, and the number of other users who have paitaission to at least one of these files. The number
of readers and writers were determined by considering thesses in the 10-day trace, while the static information
was gathered by considering a snapshot of the filesystem &tkbe end of the 10 days. The table separates statistics
for regular users and system users.

| File system operation| Crypto operation | Crypto cost | Incurred by | Frequency |

Filegroup creation RSA key generatior) 2500 ms owner per filegroup
Block hash 0.11ms writer per 4 KB block
File write Block encrypt 0.59ms writer per 4 KB block
Merkle root sign 28.5ms writer per file
Write verify 0.01ms server per file
Block hash 0.11ms reader per 4KB block
File read Block decrypt 0.61ms reader per 4 KB block
Merkle root verify 8.5ms reader per file
Message encrypt 0.01ms all per 100 byte message
Wire integrity Message decrypt 0.01ms all per 100 byte message
Message hash 0.003 ms all per 100 byte message

Table 4: Cryptographic primitive cost. This table lists t@st of the basic cryptographic primitives, and the file
systems operations where they are incurred. The root sigmaind verification is done only once per file read or
write, irrespective of the size of the file. Wire integrityriseded only for messages, not for file contents.

7.3 Benchmark evaluation performance of Plutus with DES is slightly better than

that of OpenAFS with fcrypt as the cipher: the fcrypt

We used a mic_robenchmark to compare the perforn_war}ﬁﬁher is similar to DES. Though Plutus with 3DES is
of Plutus to native OpenAFS and to SFS [30]. The micrap .t 1 4 times slower than SFS, the latter uses ARC4,

f!le benchmqus. 'I_'hese involye reading and writing m%T 3DES [9]. This leads us to believe that if Plutus were
tiple 40 MB files with sequential and random accesses. . dified to use ARC4 or AES. it would compare well
We used two identically configured machines, as in the, spg. ’

previous section, connected with a Gigabit ethernet link. \te that this experiment is a pessimistic comparison

In all these.experlir.nents we restarted the client daem@R«een Plutus and the other two encrypt-on-wire sys-

before reading/writing any file. We present the mean ofif,5 | the setting where there are several clients ac-

out of 10 runs, ignoring the top and bottom two outliers.cesging data from the same server, Plutus would provide
Table 5 presents the results of this evaluation. First, thgiier server throughput because the server does not per-

table shows that the overhead of Plutus is primarily dgsrm much crypto. This would translate to lower average
pendent on the choice of block cipher used. For instang§eancies for Plutus.

it takes 5.9s to decrypt 40MB with 3DES, which is about

75% of the average sequential read latency. Thus Plutus

with no-crypto is faster than that with DES, which is irf§ Related work
turn faster than with 3DES.

Second, Plutus performs as well as (if not better thaMlpost file systems including those in MS Windows, tra-
the other two encrypt-on-wire systems. In these compditional UNIX systems, and secure file systems [19,
isons it is important to compare systems that use block 22, 30] do not store files encrypted on the server. Of
phers-with-similar-security-properties. In particular, theourse, the user may decide to encrypt files before stor-
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Read Write
seq | rand | seq | rand

w/ 3DES cipher| 7.84s| 7.78s| 7.92s| 8.13s

File systems| Crypto options

Plutus w/ DES cipher | 4.58s| 454s| 4.27s| 4.79s
w/o crypto 1.39s| 1.51s| 1.59s| 2.64s
OpenAFS w/o wire-crypto | 1.28s| 1.31s| 1.57s| 1.67s

w/ wire-crypto | 4.66s| 4.90s| 5.34s| 5.43s
SFS w/ crypto 5.55s| 5.30s| 4.47s| 7.21s

Table 5: Performance of Plutus, OpenAFS (version 1.2.8)S##f8l (version 0.7.2) accessing 40 MB files with random
and sequential access. The crypto option for Plutus ineictiie cipher used for block encryption; the OpenAFS
crypto option indicates whether it uses wire-crypto or r18FS uses wire-crypto. OpenAFS uses fcrypt [3] for block
encryption whereas SFS uses ARC4 [23]. The version of Plutasrypto still performed all the operations required
to manage and maintain the Merkle hash tree; the resultsatelthat this overhead is small.

age but this overwhelms the user with the manual esre in use. A comprehensive evaluation of these systems
cryption/decryption and sharing the file with other useeppear in a previous study [40].
— while trying to minimize the amount of computation.
This is precisely the problem that Plutus addresses. 8.2 Untrusted servers
Though MacOS X and Windows CIFS offer encrypted
disks, they do not allow group sharing short of sharing@ne way to recover from a malicious server corrupting the
password. persistent store is to replicate the data on several servers
In the state machine approach [26, 44], clients read and
] write data to each replica. A client can recover a corrupted
8.1 Secure file systems file by contacting enough replicas. The drawback to this
method is that each replica must maintain a complete copy

In encrypt-on-disk file systems, the clients encrypt all db'f the data.
rectories and their contents. The original work in this
area is the Cryptographic File System (CFS) [5], whi(mt
used a single key to encrypt an entire directory of fil
and depended on the underlying file system for authori%
tion of writes. Later variants on this approach include
TCFS [8], which uses a lockbox to protect only the keys,
and Cryptfs [51]. Cepheus[13] uses group-managed qu,
boxes with a centralized key server and authorizationd-e}
the trusted server. SNAD [35] also uses lockboxes an
introduces several alternatives for verifying writes. The
SIRIUS file system layers a cryptographic storage file sy§  Conclusion
tem over heterogenous insecure storage such as NFS and
Yahoo! Briefcase [21]. This paper has introduced novel uses of cryptographic
Encrypt-on-wire file systems protect the data from agrimitives applied to the problem of secure storage in
versaries on the communication link. Hence all commthe presence of untrusted servers and a desire for owner-
nication is protected, but the data is stored in plaintextanaged key distribution. Eliminating almost all require-
Systems that use encryption on the wire include NASHents for server trust (we still require servers not to de-
(Networked Attached Storage) [20], NFS over IPSec [24troy data — although we can detect if they do) and keep-
SFS (Self-Certifying File System) [30], iSCSI [42], andhg key distribution (and therefore access control) in the
OpenAFS with secure RPC. hands of individual data owners provides a basis for a se-
In these systems the server is trusted with the data anudle storage system that can protect and share data at very
meta-data. Even if users encrypt files, the server knolasge scales and across trust boundaries.
the filenames. This is not acceptable if the servers are unThe mechanisms described in this paper are used as
trustworthy, as in a distributed environment where serversilding blocks to design Plutus, a comprehensive, secure,
can belong to multiple administrative domains. On thand efficient file system. We built a prototype implemen-
positive side, this simplifies space management becatest®n of this design by incorporating it into OpenAFS,
it-is-easy-for-the.serverto-figure-out the data blocks thamd measured its performance on micro-benchmarks. We

Rabin’s Information Dispersal Algorithm divides a file

o several pieces, one for each replica [39]. While the
gregate space consumed by all the replicas is minimal,
e system does not prevent or detect corruption.

Alon et al. describe a storage system resistant to cor-
ption of data by half of the servers [2]. A client can
cover from integrity-damaged files as long as a thresh-
number of servers remain uncorrupted.
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showed that the performance impact, due mostly to thg®] W.

cost of cryptography, is comparable to the cost of two pop-
ular schemes that encrypt on the wire. Yet, almost all of
Plutus’ cryptography is performed on clients, not server[é,o]
so Plutus has superior scalability along with stronger se-

curity.
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